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Very recent criticisms of existing exchange-correlation functionals by Wanko et al. applied to
systems of biological interest have led us to reopen the question of the ground-state conformer
of glycine: the simplest amino acid. We immediately show that the global minimum of the
Hartree–Fock (HF) ground-state leads to a planar structure of the five non-hydrogenic nuclei,
in the non-ionized form NH2–CH2–COOH. This is shown to lie lower in energy than the
zwitterion structure NHB3

þ–CH2–COO�, as required by experiment. Refinement of the
nuclear geometry using second-order Møller–Plesset perturbation theory (MP2) is also carried
out, and bond lengths are found to accord satisfactorily with experimentally determined values.
The ground-state electron density for the MP2 geometry is then redetermined by HF theory and
equidensity contours are displayed. The HF first-order density matrix �(r, r 0) is then used
to obtain similar exchange-energy density (�x(r)) contours for the lowest conformer of glycine.
At first sight, their shape looks almost the same as for the density �(r), which seems to vindicate
the LDA proportional to �(r)3/4. However, by way of an analytically soluble model for an
atomic ion, it is shown that this has to be corrected to obtain an accurate HF exchange
energy Ex as the volume integral of �x(r). Finally, recognizing that for larger amino acids,
the use of HF plus MP2 perturbation corrections will become prohibitive, we have used the HF
information for �x(r) and �(r) to plot the truly non-local exchange potential proposed by Slater,
from the density matrix �(r, r 0). This latter calculation should be practicable for large amino
acids, but there adopting Becke’s one-parameter form of �x(r) correcting LDA exchange.
Some future directions are suggested.

Keywords: Inhomogeneous electron liquid; Exchange energy and potential; Glycine

1. Introduction

While, in principle, density functional theory (DFT) is a very attractive method to apply
to molecules of interest in biology, a serious study by Wanko et al. [1] has led them very
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recently to strongly warn about the inadequacies of presently used approximate

exchange-correlation functionals for such molecular biophysical problems.
Having interests in the simplest amino acids [2], we have therefore re-examined the

interesting contributions on gaseous glycine by Stepanian et al. [3] and Wang et al. [4]

both of which studies were directly concerned with three low-lying conformers of the

smallest amino acid: glycine.
Because of the approximations to the exchange energy and exchange potential made

in the DFT functionals used in references [3] and [4] above, we have returned to

Hartree–Fock (HF) theory, which treats ‘Fermi hole’ effects between parallel spin

electrons exactly [5]. Of course, the HF method, according to Löwdin’s definition [6],

has no correlation energy. Therefore, having established the immediate merits of HF

theory for the ground-state conformer of glycine in section 2 below, we consider in

section 3 the changes brought about in the HF optimized nuclear geometry by adding

second-order Møller–Plesset perturbation (MP2) corrections to the energy [7]. We bring

these predictions of nuclear geometry of glycine in its ground-state into contact with

experiment, and find fairly good accord. Therefore, we have next recalculated the HF

electron density at the MP2 predicted geometry and exhibited specimen equidensity

contours. Section 4 then focuses attention on the other quantities of central importance

in DFT, namely exchange energy density and exchange potential. To be definite,

we have singled out the Becke one-parameter exchange-energy density [8] by way of

illustration. Section 5 consists of a summary, plus some suggestions for further work

which should prove fruitful.

2. Ground-state conformer of glycine using HF theory

For the reasons set out above, we have used HF theory to treat the exchange effects

between parallel spin electrons exactly. But, of course, we want to find the global

minimum on the potential energy surface of glycine.

2.1. Prelimilergy orientation

Running a HF program with basis set 6-31G included in the programme Gaussian 03 to

obtain a preliminary orientation, we found the optimized structure shown in figure 1.

Evidently, this figure reflects the zwitterion structure referred to in the Abstract, with

NH3 and COO groups prominent. Since earlier workers [3,4] stress that the lowest

conformer is of the non-ionized form NH2–CH2–COOH we shall merely summarize

a few basic points arising from figure 1. First, and of major importance for the merits of

HF theory as a starting point for treating glycine, the 5 non-hydrogenic nuclei lie, to

high numerical accuracy in a plane. Second, the prominent C–N bond has predicted

length 1.511 Å, to be compared with the experimental value 1.467 Å quoted in ref. [3].

Third, the total HF energy of the conformer displayed in figure 1 is �282.657 a.u.
However, because of the zwitterionic nature of the configuration depicted in figure 1,

we have done more extensive calculations which reveal that figure 1 is a local, not

a global, minimum, in HF theory.
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2.2. Convergence on to global HF minimum of non-ionized form NH2–CH2–COOH

Using the Aug-cc-p VTZ basis as implemented in Gaussian 03 the geometry of the
global minimum of glycine was optimized.

Again, the heavy non-hydrogenic nuclei are accurately in a plane. The total HF
energy is �282.955 a.u. This conformer is depicted in figure 2. The C–N bond length in

this conformation is 1.4353 Å.

3. Changes brought about by addition of MP2 corrections

Let us again first consider the changes in figure 1 due to the addition of MP2
corrections. To gain orientation once more, we show in figure 3 a new optimized
geometry energy from the MP2 perturbation energy being added to figure 1. The result
is seen to be rather dramatic: we now have CH2 and NH2 groups rather than the
zwitterion-like form in figure 1. But, because of such major changes in geometry, we can

hardly expect low-order perturbation theory to be adequate. So we turn to deal, more
thoroughly, with MP2 corrections applied to the non-ionized form shown in figure 2.

The main differences between the HF and MP2-corrected geometries for the global
minimum are that bonds lengthen while valence angles are found to decrease. For bond
lengths largest changes are found for both CO bonds which lengthen approximately
0.027 Å. The OH bond lengthening amounts to 0.024 Å.

For the valence angles largest changes are found for the COH valence angle which

reduces from 108.96� (HF) to 106.16� (MP2). Other important changes are related to
the NH valence angles: CNH reduces upon introduction of the MP2 corrections from
111.19� (HF) to 109.71� (MP2).

Figure 1. Preliminary orientation: optimized HF geometry and energy for glycine. Bond lengths are
recorded on figure.
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Figure 2. Global HF optimized geometry. Note that in contrast to figure 1 this is of form
NH2–CH2–COOH.

Figure 3. MP2 geometry starting from ‘unperturbed’ geometry in figure 1. Bond lengths are recorded on
figure.
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In the light of the MP2 optimized geometry displayed in figure 2, we have

recalculated the HF electron density with this nuclear framework. As use will be made

of this refined density �(r) in the following section in relation to approximations to

exchange-energy density and exchange potential, in figure 4 we display in the plane

containing the five heavy nuclei in glycine equidensity contours.
Two other low-lying conformers are recorded in Appendix 1.

4. Equiexchange-energy density contours for lowest conformer of glycine,

from HF density matrix

In HF theory, we shall write the total exchange energy Ex as the volume integral of

a density "x(r):

Ex ¼

Z
"xdr: ð1Þ

Figure 4. Equidensity �(r) contours for glycine. The contour lines are drawn at values of 100, 50, 20, 10, 5, 3,
2, 1, 0.1, 0.05, 0.03, 0.01 and 0.001 e/Å3, respectively.
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While equation (1) does not suffice to define "x(r) uniquely, it is natural to go back

to the expression given by Dirac [5], which is valid for a single determinantal wave

function (e.g. HF):

Ex ¼ �
1

4

Z
�2ðr, r 0Þ

r� r 0j j
drdr 0 ð2Þ

and to then define �x(r) by

"xðrÞ ¼ �
1

4

Z
�2ðr, r 0Þ

r� r 0j j
dr 0: ð3Þ

Here �(r, r 0), is the Dirac density matrix, defined in the present context as

�ðr, r 0Þ ¼ 2
X

occupied
i

 iðrÞ 
�
i ðr
0Þ ð4Þ

where  i(r) denote the HF orbitals. As indicated explicitly in equation (4), the sum is

restricted to occupied HF orbitals only.
Then, Slater [9] proposed intuitively, largely by analogy with electrostatics, that an

exchange potential, which we denote by VSl
x ðrÞ below, should satisfy

Ex ¼
1

2

Z
�ðrÞVSl

x ðrÞdr: ð5Þ

Comparison with equation (2) suggests that one should identify VSl
x ðrÞ as

VSl
x ðrÞ ¼ �

1

2�ðrÞ

Z
�2ðr, r 0Þ

r� r 0j j
dr 0 ð6Þ

where �(r)¼ �(r, r 0)| r 0 ¼ r. This equation (6) is Slater’s proposed approximation for the

exchange potential. Comparing equations (3) and (6), one is led immediately to the

direct connection between the exchange energy density "x(r) and the Slater exchange

potential VSl
x ðrÞ as

VSl
x ðrÞ ¼

2"xðrÞ

�ðrÞ
, ð7Þ

Kleinman [10] has strongly argued the merits of the approximate form (7), or its

equivalent (6). Whereas the ‘correct’ exchange-only potential is defined by the

functional derivative

VxðrÞ ¼
�Ex

��ðrÞ
, ð8Þ

Kleinman pointed out that the Slater potential is a partial functional derivative of Ex in

equation (2). Kleinman’s study was formally completed by Holas and March [11],

who exhibited the ‘correction’ terms to add to VSl
x ðrÞ to give Vx(r) in equation (8), but no

practical calculations by their route have, to our knowledge, been carried out to date.
Following this background, we turn now to the approximate exchange energy density

functional Ex[�] proposed by Becke [8]. Whereas "x(r) involves the Dirac density matrix
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�(r, r0) through equation (3), Becke corrects the local density approximation (LDA)
proportional to �(r)3/4 by writing [8],

"xðrÞ ¼ "
LDA
x ðrÞ �

�

21=3
�ðrÞ4=3

xðrÞ
� �2

1þ 6�xðrÞ sinh�1 xðrÞ
ð9Þ

where x(r) is defined by

xðrÞ ¼ 21=3
rr�ðrÞ
�� ��
�ðrÞ4=3

ð10Þ

while � is the Becke parameter with recommended value � ¼ 0042.0 atomic units.
"LDA
x ðrÞ in equation (9) is given explicitly by

"LDA
x ðrÞ ¼ �cx�ðrÞ

4=3 : cx ¼
3

4
e2

3

�

� �1=3

: ð11Þ

We turn next to illustrate briefly the quantitative applicability of the Becke form (9)
on a one-centre example, where both �(r) and "x(r) have been calculated in exact
analytical form.

4.1. Accuracy of the Becke form (9) on a 10-electron non-relativistic atomic ion in the

limit of large atomic number Z

From the so-called 1/Z expansion which is a pillar of atomic theory [12], as the atomic
number Z becomes sufficiently large, �(r) can be approximated by pure Coulomb wave
functions. Then March and Santamaria [13] find �(r) to be exactly, for filled K plus L
shells,

�ðrÞ ¼
2

�

� �
Z

a0

� �3

exp
�2Zr

a0

� �

þ
1

4
�

� �
Z

a0

� �3

exp
�Zr

a0

� �
1� Zr

a0
þ
1

2

Zr

a0

� �2
" #

: a0 ¼
�h2

me2
¼ 1 a:u: ð12Þ

These authors also gave the Dirac density matrix �(r, r 0) in closed form, which is such
that �(r, r 0)|r 0¼ r¼ �(r) in equation (12). Subsequently, Howard et al. [14] utilized this
pure Coulomb density matrix � in equation (4) to calculate �x(r) exactly as

"xðrÞ ¼ ð1=15552Þ
e2�3

�r

� �
expð�4�rÞ

15552ð1þ �rÞ þ expð�rÞ 4096þ 3840ð�rÞ þ 2304ð�rÞ2 þ 3456ð�rÞ3
� ��

þ expð2�rÞ
�13068þ 2430ð�rÞ þ 2916ð�rÞ þ 2916ð�rÞ2

þ1944ð�rÞ3 þ 486ð�rÞ4 þ 243ð�rÞ5

" #

�4096 exp
5�r

2

� �
þ expð3�rÞ �1944� 972�r� 972ð�rÞ5

� ��

where � ¼
Z

a0
¼ Z a:u: ð13Þ
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For Z¼ 92, the so-called radial exchange energy density 4�r2"x(r) is compared, using
the exact form (13), with the approximation (11), this being calculated with the exact
density �(r) in equation. (12). These two results are reproduced in figure 5, and the
agreement to graphical accuracy is somewhat remarkable for the simplicity of the LDA
form. However, there is still a significant difference between the areas under the two
curves, the exact exchange energy Ex being given by

ExðZÞ ¼ �1:74788Z
e2

a0

: a0 ¼
h2

me2
¼ 1 a:u:

ð14Þ

the value being Ex¼�160.805 a.u. for Z¼ 92, of which LDA in equation (11)
contributes �147.969 a.u. The accuracy of Becke’s formula, mentioned explicitly in
section 4.2 below, greatly reduces this difference, leaving a discrepancy of about 0.2 a.u.

With this brief introduction using an analytic atomic example, let us return to the HF
density matrix �(r, r 0) for the lowest conformer of glycine and to use this matrix to
calculate "x(r) from equation (3). The details of how this has been achieved are recorded
in an Appendix. We turn to present equiexchange-energy density contours for glycine.

4.2. Contours of constant exchange energy density ex(r) for glycine

Figure 6 shows the results of the above calculations. Comparison with the equielectron
HF density contours in figure 4 shows, at first sight, some considerable similarity of
shape. While this might appear to vindicate the LDA exchange for the HF theory of
glycine, appeal to the earlier example of an atomic ion in LDA warns of a major error
in the total exchange energy. Such an error would, of course be unacceptable for
glycine. From the exchange energy density "x(r) displayed in figure 6 we find the

Figure 5. 4�r2�x(r) vs. r in atomic units (e2¼ 1, a0¼ 1). Upper curve was obtained using formula (13)
with z¼ 92. Lower curve is IDA in equation (11), using exact density in equation (12). While the integrated
difference in total exchange energy Ex is 13 a.u., Becke’s formula (9) reduces the discrepancy to � 0.2 a.u.
[redrawn from [14]].
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total HF exchange energy for glycine to be "x ¼ � 8.09418 a.u. The accuracy of Becke’s

one-parameter exchange discussed above, of � 0.1%, is still a sigificant error by

chemical standards relevant to biologically important molecules such as glycine.
Nevertheless, because of the practicability of DFT for even much larger amino acids,

we shall conclude this section by giving results for the non-local Slater exchange

potential defined in equation (7) above.

4.3. Contours of equipotential for Slater’s exchange potential VSl
x ðrÞ

From equation (7), we merely require twice the quotient of "x(r) and �(r), the HF
quantities presented in figures 6 and 4, respectively.

The equipotential contours are displayed in figure 7, and we stress that VSl
x ðrÞ shown

there represents a fundamentally non-local approximation. It seems clear that
departures from locality are more substantial for the exchange potential than for the

exchange energy density.

Figure 6. Contours of constant exchange energy density "x(r) for lowest conformer of glycine in plane of
five heavy nuclei. This was calculated from the HF density matrix �(r,r0) via equation (3). Contour values are
the same as those for figure 2, however now units are a.u.
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5. Summary and proposed future directions

The main achievements of the present work are as follows:

(i) The calculation of the ground-state electron density �(r) of the lowest conformer
of glycine displayed in figure 4, by HF theory, but used at the optimized MP2
nuclear geometry.

(ii) The determination of the HF exchange energy density "x(r) for the same
geometry from the HF first-order density matrix �(r, r 0). The shapes of the
equiexchange energy density contours in figure 6 do reflect quite well the �(r)
equidensity contours in the present HF theory of glycine. However, it is of
obvious importance in molecules of biological interest to get truly quantitative
exchange energies, such as we have obtained here for the ground state conformer
of glycine.

We want finally to point some further directions which should prove fruitful.
We have checked, in both HF theory and with HF þMP2 corrections that the structure
of the lowest conformer presented has real vibrational frequencies. We believe it
important for the future to assess the changes in (a) nuclear geometry of glycine and (b)

Figure 7. Slater’s non-local exchange potential VSlater
x ðrÞ calculated from equation (7) using "x(r) and �(r)

from the HF results shown in figures 7 and 5, respectively.
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correlation energy, caused by MP4 additional corrections. Even at MP2, we can define
a correlation energy density "MP2

C ðrÞ by

EMP2
C ¼

Z
"MP2
C ðrÞdr: ð15Þ

In the future, it will be of interest to attempt to plot "MP2
C ðrÞ to examine whether again

LDA for the correlation correction is a useful starting point for describing the HF þ
MP2 results for glycine. However, it has to be borne in mind now that while HF theory
settles the question of the exchange-energy density "x(r), and its volume integral Ex, the
correlation correction EMP2

C in equation (15) can only be a fraction of the total
correlation energy, using Löwdin’s definition. Naturally, to gain further insight into the
departures from LDA of "MP2

C ðrÞ in equation (15) in glycine and other amino acids will
be important for future DFT studies of really large molecules of biological interest.
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Appendix 1

Two further low-lying glycine conformers
The global HF minimum has been illustrated in figures 2 and 4 of the main text.

In this Appendix, we record structures (Figures A1.1 and A1.2) of two HF low-lying
conformers corresponding to local minima on the glycine potential energy surface.
Differences in geometry between these conformers is summarized in Table A1.

Appendix 2

Methodology for calculating exchange-energy density "xð~rÞ from HF first-order density
matrix �ð~r, ~r 0Þ.

Hartree–Fock orbitals are used to evaluate the electron density �(r) as well as the
exchange density "xð~rÞ as defined in

"xð~rÞ ¼ �
e2

4

X
i<j

Z
’ið~r

0Þ’jð~r
0Þ

~r� ~r 0
�� �� dr 0’ið~rÞ’jð~rÞ

which is a realization of the Dirac density matrix in terms of HF-orbitals. For a given
point r, space in the integrals Z

�	ð~r
0Þ�
ð~r

0Þ

j~r� ~r 0j
dr 0

Figure A1.1. Low-lying conformers of glycine from HF theory, with energy above configuration in figure 2
by 2.86 kcalmol�1.
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are calculated over the atomic orbitals �	 and �
: then transformed to the

Molecular Orbital basis and subsequently multiplied with the values of the MO’s ’ið~rÞ
and ’jð~rÞ at position ~r.

Figure A1.2. A further, slightly higher energy conformer for glycine than that shown in figures 2 by
3.12 kcalmol�1.

Table A1. Differences in geometry between the conformers A1.1 and A1.2.

A1.2 A1.1

C2–N1 1.4522 1.4523
C3–C2 1.5148 1.5226
O4–C3 1.2050 1.3201
O5–C3 1.1403 1.1735
H6–N1 1.0132
H6–O4 0.9450
H7–C2 1.0215 1.0777
H8–C2 1.0274 1.0783
H9–N1 0.9326 0.9908
H10–N1 0.9246 0.9898

C3–C2 – N1 101.62 113.51
O4–C3–C2 111.45 115.29
O5–C3–C2 114.59 121.80
O5–C3–O4 133.94 122.88
H6–N1–C2 99.31
H6–O4–C3 108.07
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